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• Phase space tomography and maximum-entropy inference 


• Two algorithms:


• GPSR: generative modeling approach


• MENT: classical approach


• Conclusion
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Background



Goal: infer phase space density from measured 
projections
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projections
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Accelerator
Diagnostic
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Goal: infer phase space density from measured 
projections
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Challenge A: searching the space of distributions
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Space of distributions p(x)



Challenge B: solution is not unique
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Space of distributions p(x)

Gk[p(x)] ≡ gk(uk∥
) − ∫ p (ℳ−1

k (uk)) duk⊥
= 0

“Feasible set”



Challenge B: solution is not unique
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Space of distributions p(x)

Gk[p(x)] = 0

Things I will not discuss: 

Experimental design: how to shrink 
volume of feasible set 

Uncertainty quantification: how to 
calculate volume of feasible set 



Challenge B: solution is not unique
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Space of distributions p(x)

Gk[p(x)] = 0

Things I will discuss: 

How to select a single distribution from 
the feasible set.



MaxEnt: rank solutions by entropy (simplicity) and 
choose highest ranked solution
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Space of distributions p(x)

Gk[p(x)] = 0

S[p(x), p*(x)]

Solution



Entropy functional fixed by “Principle of Minimal 
Updating”
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p(x)p*(x)

New information

S[p(x), p*(x)] = − ∫ p(x)log ( p(x)
p*(x) ) dx

https://arxiv.org/pdf/2107.04529



MaxEnt solution may be incorrect, but it’s the best 
we can do with the available information
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Space of distributions p(x)

Gk[p(x)] = 0

S[p(x), p*(x)]

Solution



GPSR: generative modeling approach



Generative Phase Space Reconstruction (GPSR)
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[MOP034] “Efficient 6-dimensional phase space measurements and applications to autonomous monitoring at LCLS-II”

[MOP029] “Development and Applications of Differentiable Coherent Optical Transition Radiation Simulations”

[MOP071] “Phase space reconstruction of beams affected by coherent synchrotron radiation”



Generative Phase Space Reconstruction (GPSR)
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x = ℱ(z; θ)

Base

Lattice

uk = ℳk(x)

gk(uk∥
)

uk∥

KDE

L = D[gk, g̃k]

g̃k(uk∥
)Gradient descent

θ ← θ − η∇θ L

See Roussel et al., PRAB (2025) [https://doi.org/10.1103/PhysRevAccelBeams.27.094601]

Generative model

https://doi.org/10.1103/PhysRevAccelBeams.27.094601


Generative Phase Space Reconstruction (GPSR)

17

x = ℱ(z; θ)

Base

Lattice

uk = ℳk(x)

gk(uk∥
)

uk∥

KDE

L = D[gk, g̃k]

g̃k(uk∥
)Gradient descent

θ ← θ − η∇θ L

See Roussel et al., PRAB (2025) [https://doi.org/10.1103/PhysRevAccelBeams.27.094601]

Generative model

https://doi.org/10.1103/PhysRevAccelBeams.27.094601


Generative Phase Space Reconstruction (GPSR)
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 is differentiable, invertible map from  to .





ℱ : ℝN → ℝN z x

log p(x) = log p(z) − log |Jℱ(z) |

Jℱ =
dx
dz

=

∂x1

∂z1
… ∂x1

∂zN

⋮ ⋱ ⋮
∂xN

∂z1
…

∂xN

∂zN

Normalizing flows enable simultaneous sampling 
and density evaluation
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z x

→



Normalizing flows can estimate entropy
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S[p(x), p*(x)] = − ∫ p(x)log (p(x)/p*(x)) dx

= − 𝔼p(x) [log (p(x)/p*(x))]
≈ −

1
N

N

∑
i=1

log(p(x(i))/p*(x(i)))

{x(i)} ∼ p(x)



Normalizing flows can estimate entropy
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Penalty method not ideal but (in my experience) 
can generate pretty good solutions
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L = − S[p, p*] + μD[gk, g̃k]

D[gk, g̃k]S[p, p*]



23



Toy problem: 6D “rings” distribution projected 
along random 1D directions
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x, y, z

x′￼, y′￼, z′￼



Toy problem: 6D “rings” distribution projected 
along random 1D directions
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x, y, z

x′￼, y′￼, z′￼
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• Efficient method to optimize high-dimensional distributions 
when differentiable simulations are available.


• Flexible — different kinds of data.


• Future: more sophisticated constrained optimization


• Future: better/non-invertible flows

Summary of GPSR
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MENT: classical approach



Lagrangian:





Enforce  with respect to  and :





Ψ = S[p(x), p*(x)] + ∑
k

∫ Gk[p(x)]λk(uk∥
)duk∥

δΨ = 0 p λk

p(x) = p*(x)∏
k

exp [λk(uk∥
(x))]

p(x) = p*(x)∏
k

hk(uk∥
(x))

Maximum-entropy PDF is exponential of product 
of Lagrange Multipliers
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∏
k

hk(uk∥
(x))p*(x)



Lagrangian:





Enforce  with respect to  and :
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Prior Positive functions defined on 
measurement axes

∏
k

hk(uk∥
(x))p*(x)



Nonlinear Gauss-Seidel iterations used to solve for 
unknown functions: simple algorithm!
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h(i+1)
k = h(i)

k [(1 − ω) + ω (gk /g̃k)]

Constraints

Entropy

ρ*

ρ

Structure



Standard implementation uses numerical 
integration (reverse mode) to compute projections

33

{u(i)
k⊥ }

g̃k(uk∥
) ≈ ∑

i

p(u(i)
k⊥

|uk∥
)

x = ℳ−1
k (uk)

Integration 
points

Integration

p(x) = p(uk)
Symplectic



I propose particle sampling (forward mode) for 
high-dimensional problems
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g̃k(uk∥
) ≈ HIST {u(i)

k∥ }

uk = ℳk(x)

Density estimation

{x(i)} ∼ p(x)
Sampling



Metropolis-Hastings is gridless sampling 
algorithm with long-run guarantees
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Requires hand-tuning of jumping 
distribution, and it’s not always 
clear when it converges… 


But let’s try it.




Test: 6D Gaussian mixture distribution
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P
R
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D

x1-x2 x1-x3 x1-x4 x1-x5 x1-x6 x2-x3 x2-x4 x2-x5 x2-x6 x3-x4 x3-x5 x3-x6 x4-x5 x4-x6 x5-x6

T
R
U

E

Reverse (  integration,  measurement grid): 24 hour / iteration


Forward (500,000 samples, 1000 chains)             : 30 sec  / iteration

504 502



Test: 6D Argonne Wakefield Accelerator dataset
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https://doi.org/10.1103/PhysRevAccelBeams.27.094601

https://doi.org/10.1103/PhysRevAccelBeams.27.094601
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• Elegant — minimal storage, simple algorithm.


• Flexible — no restrictions on distribution or transformations.


• Future: new sampling algorithm / tuning


• Future: GPU + parallel

Summary of MENT
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Conclusion



• Several MaxEnt algorithms running in 2D/4D/6D.

• Algorithm improvements possible

• Currently working on uncertainty quantification (UQ), improved 

dynamic range (DR), self-fields

Conclusion
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• Several MaxEnt algorithms running in 2D/4D/6D.

• Algorithm improvements possible

• Currently working on uncertainty quantification (UQ), improved 

dynamic range (DR), self-fields


• https://github.com/austin-hoover/ment

• https://github.com/roussel-ryan/gpsr

• Zenodo repositories linked in papers

Conclusion
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https://github.com/austin-hoover/ment
https://github.com/roussel-ryan/gpsr


• Several MaxEnt algorithms running in 2D/4D/6D.

• Algorithm improvements possible

• Currently working on uncertainty quantification (UQ), improved 

dynamic range (DR), self-fields


• https://github.com/austin-hoover/ment

• https://github.com/roussel-ryan/gpsr

• Zenodo repositories linked in papers


• Thanks for listening!

• hooveram@ornl.gov

Conclusion
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https://github.com/austin-hoover/ment
https://github.com/roussel-ryan/gpsr




MaxEnt updates prior to posterior given 
constraints on posterior
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p(x)p*(x)

New information

max
p(x)

S[p(x), p*(x)] s.t. {Gk[p(x)] = 0}



Given a likelihood function, MaxEnt becomes 
Bayesian inference
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p(x)p*(x)

New information

p(x) ∝ p(y |x)p*(x)

https://doi.org/10.1063/1.2821302



Kangaroos
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Left-handed
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-e
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Kangaroos
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Two ways to build flows: discrete vs. continuous
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ContinuousDiscrete

∂tz = v(z, t; θ)
x ≡ z(t = T )

x = ℱ(z; θ)
ℱ = ℱT ∘ ℱT−1 ∘ … ∘ ℱ2 ∘ ℱ1

ℱ1 ℱ2ℱ0

https://arxiv.org/abs/1912.02762 https://arxiv.org/abs/1810.01367



Autoregressive flow architecture
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Conditioner (NN) Transformer (1D spline)

https://arxiv.org/abs/1912.02762



Rational-quadratic spline transformer

51https://arxiv.org/abs/1912.02762



Find approximate constrained maximum using 
Penalty Method (PM) in outer loop
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x = ℱ(z; θ)

Base

Lattice

uk = ℳk(x)

gk(uk∥
)

uk∥

KDE

L = − S[ρ, ρ*] + μD[gk, g̃k]

g̃k(uk∥
)Gradient descent

θ ← θ − ∇θ L
−S[p, p*] D[gk, g̃k]

Flow

p(x) = p(z)/ |Jℱ |
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FLOW
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First 4D MENT demonstration in 1981!
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MENT recently applied to 4D reconstructions in 
SNS accelerator at ORNL
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MENT requires map between PDF and projections
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ℳk

gk(uk∥
)

g̃k(uk∥
)

hk(uk∥
)

p(x) = p*(x) ∏
k

hk(x)

uk∥

ℳ−1
k



Test: 12D Gaussian Mixture distribution
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6D phase space distribution can strongly 
influence beam evolution!
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Position

Momentum

Dynamics


