%OAK RIDGE

National Laboratory

High-dimensional maximum-entropy
phase space tomography

Austin Hoover

North American Particle Accelerator Conference
Sacramento, CA, USA

August 12, 2025

%% U.S. DEPARTMENT OF

foﬁ ORNL IS MANAGED BY UT-BATTELLE LLC
“\@A ENERGY FOR THE US DEPARTMENT OF ENERGY



Outline

* Phase space tomography and maximum-entropy inference
* Two algorithms:

 GPSR: generative modeling approach

« MENT: classical approach

e Conclusion
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Goal: infer phase space density from measured
projections
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Goal: infer phase space density from measured
projections
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Goal: infer phase space density from measured
projections

px)
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Challenge A: searching the space of distributions

Space of distributions p(x)
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Challenge B: solution is not unique

Space of distributions p(x)
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Challenge B: solution is not unique

Things I will not discuss:

Experimental design: how to shrink
volume of feasible set

Uncertainty quantification: how to
calculate volume of feasible set

Space of distributions p(x)
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Challenge B: solution is not unique

Things I will discuss:

How to select a single distribution from
the feasible set.

Space of distributions p(x)
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MaxEnt: rank solutions by entropy (simplicity) and
choose highest ranked solution

S[p(X), p*(x)]

Solution

G lpx)] =0

Space of distributions p(x)
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Entropy functional fixed by “Principle of Minimal
Updating”

p«(X) p(x)

.

New information
. ]

S[p(x), pa(x)] = — [p(x)log ( pix) ) dx
px(x)
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MaxEnt solution may be incorrect, but it’s the best
we can do with the available information

S[p(X), p*(x)]

Solution

G lpx)] =0

Space of distributions p(x)
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GPSR: generative modeling approach
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Generative Phase Space Reconstruction (GPSR)

PHYSICAL REVIEW ACCELERATORS AND BEAMS 27, 094601 (2024)

Efficient six-dimensional phase space reconstructions

from experimental measurements using generative machine learning
Ryan Roussel ,1 Juan Pablo Gonzalez-Aguilera ,2 Eric Wisniewski,3 Alexander Ody ,3
Wanming Liu ,3 John Power ,3 Young-Kee Kim ,2 and Auralee Edelen®'
ISLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

2Departmem‘ of Physics and Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA
3Argonne National Laboratory, Lemont, Illinois 60439, USA

® (Received 19 April 2024; accepted 12 August 2024; published 11 September 2024)

[MOPO034] “Efficient 6-dimensional phase space measurements and applications to autonomous monitoring at LCLS-II”
[MOPO029] “Development and Applications of Differentiable Coherent Optical Transition Radiation Simulations”
[MOPO071] “Phase space reconstruction of beams affected by coherent synchrotron radiation”
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Generative Phase Space Reconstruction (GPSR)

Base
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https://doi.org/10.1103/PhysRevAccelBeams.27.094601

Generative Phase Space Reconstruction (GPSR)

I/lk — %k(X)
> KDE
Lattice
Base
gk(uk”) g k(uk”)
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https://doi.org/10.1103/PhysRevAccelBeams.27.094601

Generative Phase Space Reconstruction (GPSR)

I/lk — %k(.X)
>
Lattice
Base
T Gradient descent gk(blk”) ﬂ J k(ukn)
L= D[gk’ gk] uk”
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https://doi.org/10.1103/PhysRevAccelBeams.27.094601

Normalizing flows enable simultaneous sampling
and density evaluation

F - RN = RV is differentiable, invertible map from z to x.

logp(x) = logp(z) — log | J%(2) |

0x, 0x,
ES Oz
dx .1 N
Jff — d— — .
< OXp OXy
0Z; 0Zy
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Normalizing flows can estimate entropy

SIp(x), p«(x)] = — JP(X)IOg (P(X)/p«(x)) dx
= — E,y |log (p(x)/p«(x))]

1 . .
v =~ 2 log(p)/p.(x™)
=1
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Normalizing flows can estimate entropy

Published as a conference paper at ICLR 2017

MAXIMUM ENTROPY FLOW NETWORKS

Gabriel Loaiza-Ganem®, Yuanjun Gao* & John P. Cunningham
Department of Statistics

Columbia University

New York, NY 10027, USA

{912480,yg2312, jpc2181l}Rcolumbia.edu

ABSTRACT

Maximum entropy modeling is a flexible and popular framework for formulat-
ing statistical models given partial knowledge. In this paper, rather than the tra-
ditional method of optimizing over the continuous density directly, we learn a
smooth and invertible transformation that maps a simple distribution to the de-
sired maximum entropy distribution. Doing so is nontrivial in that the objective
being maximized (entropy) is a function of the density itself. By exploiting recent
developments in normalizing flow networks, we cast the maximum entropy prob-
lem into a finite-dimensional constrained optimization, and solve the problem by
combining stochastic optimization with the augmented Lagrangian method. Sim-
ulation results demonstrate the effectiveness of our method, and applications to
finance and computer vision show the flexibility and accuracy of using maximum
entropy flow networks.
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Penalty method not ideal but (in my experience)
can generate pretty good solutions

L =—S[p,p:] + uD[g, g,]

0.2 - |
- negative entropy
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Toy problem: 6D “rings” distribution projected
along random 1D directions

X, Y, Z

OAK RIDGE

nal Laboratory

24



Toy problem: 6D “rings” distribution projected
along random 1D directions
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PHYSICAL REVIEW RESEARCH 6, 033163 (2024)

High-dimensional maximum-entropy phase space tomography using normalizing flows

Austin Hoover
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA

Jonathan C. Wong
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

® (Received 31 May 2024; accepted 27 July 2024; published 12 August 2024)

Particle accelerators generate charged-particle beams with tailored distributions in six-dimensional position-
momentum space (phase space). Knowledge of the phase space distribution enables model-based beam
optimization and control. In the absence of direct measurements, the distribution must be tomographically recon-
structed from its projections. In this paper, we highlight that such problems can be severely underdetermined and
that entropy maximization is the most conservative solution strategy. We leverage normalizing flows—invertible
generative models—to extend maximum-entropy tomography to six-dimensional phase space and perform
numerical experiments to validate the model’s performance. Our numerical experiments demonstrate consistency
with exact two-dimensional maximum-entropy solutions and the ability to fit complicated six-dimensional
distributions to large measurement sets in reasonable time.

DOI: 10.1103/PhysRevResearch.6.033163
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Summary of GPSR

* Efficient method to optimize high-dimensional distributions
when differentiable simulations are available.

* Flexible — different kinds of data.
e Future: more sophisticated constrained optimization

e Future: better/non-invertible flows

OAK RIDGE

National Laboratory

28



MENT: classical approach
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Maximum-entropy PDF is exponential of product
of Lagrange Multipliers

Lagrangian:
¥ = S[px), p«(x)] + Z J'Gk[p(x)]/lk(uk“)duk”
k

Enforce 0¥ = 0 with respect to p and A,

p() = po) [ T exp |40, (0]
k

p(0) = p) | [ Iy, ()
k
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Maximum-entropy PDF is exponential of product
of Lagrange Multipliers

Lagrangian:
¥ = S[p(). pa()] + Y. JGk[p@)uk(uk”)duk”
k
Enforce 0¥ = 0 with respect to p and A,

p() = po) [ T exp |40, (0]
k

px) = p(x)

Prior
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Nonlinear Gauss-Seidel iterations used to solve for

unknown functions: simple algorithm!

Entropy

0
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Standard implementation uses numerical
integration (reverse mode) to compute projections

x =M ()

<

px) = p(uy)

LA |

Suluy) ® Zp (’“‘15? [ 4
i
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| propose particle sampling (forward mode) for
high-dimensional problems

Gu,) ~ HIST {”é?}
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Metropolis-Hastings is gridless sampling
algorithm with long-run guarantees

to 60 . . " .
. —
ty J1 Accept 6, = 2, Requires hand tu_n,lng of jumping
ts Zag o Accert 0, = 7, distribution, and it’s not always
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Test: 6D Gaussian mixture distribution

PRED

TRUE

%

r1-T2 I1-T3 I1-T4 IT1-T5 I1-Tg To-T3 To-T4 To-Tx To-Tg I3-T4y I3-Ts I3-Tg T4-Ts T4-Tg IT5-Tg
- - - v "- ‘-—- -‘ -: .‘; .. "; '. ‘ﬂ > t- . ':' ‘
- - - - - - . . = e ‘
. | = . . - .. L | ow ‘. ’_ '.. - 4 l » :‘.
Y/ i lon, u 1d): ur/i i
Reverse (50% integration, 50 measurement grid): 24 hour / iteration
Forward (500,000 samples, 1000 chains) : 30 sec / iteration
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Test: 6D Argonne Wakefield Accelerator dataset
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https://doi.org/10.1103/PhysRevAccelBeams.27.094601

%

PHYSICAL REVIEW ACCELERATORS AND BEAMS 28, L084601 (2025)

Editors' Suggestion

N-dimensional maximum-entropy tomography via particle sampling

*

Austin Hoover
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA

® (Received 4 October 2024; accepted 14 May 2025; published 7 August 2025)

We propose a modified maximum-entropy (MENT) algorithm for six-dimensional phase space
tomography. The algorithm uses particle sampling and low-dimensional density estimation to approximate
large sets of high-dimensional integrals in the original MENT formulation. We implement this approach
using Markov Chain Monte Carlo (MCMC) sampling techniques and demonstrate convergence of
six-dimensional MENT on both synthetic and measured data.

DOI: 10.1103/z12h-3v32
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Summary of MENT

 Elegant — minimal storage, simple algorithm.
* Flexible — no restrictions on distribution or transformations.
* Future: new sampling algorithm / tuning

e Future: GPU + parallel
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Conclusion
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Conclusion

e Several MaxEnt algorithms running in 2D/4D/6D.

* Algorithm improvements possible

* Currently working on uncertainty quantification (UQ), improved
dynamic range (DR), self-fields
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Conclusion

e Several MaxEnt algorithms running in 2D/4D/6D.

* Algorithm improvements possible

* Currently working on uncertainty quantification (UQ), improved
dynamic range (DR), self-fields

 https://github.com/austin-hoover/ment
» https://github.com/roussel-ryan/gpsr
e Zenodo repositories linked in papers
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https://github.com/austin-hoover/ment
https://github.com/roussel-ryan/gpsr

Conclusion

e Several MaxEnt algorithms running in 2D/4D/6D.

* Algorithm improvements possible

* Currently working on uncertainty quantification (UQ), improved
dynamic range (DR), self-fields

 https://github.com/austin-hoover/ment
» https://github.com/roussel-ryan/gpsr
e Zenodo repositories linked in papers

* Thanks for listening!
 hooveram@ornl.gov
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MaxEnt updates prior to posterior given
constraints on posterior

p«(X) p(x)

.

New information
. ]

max S[p(x), p«x)] st {Glpx)] =0}
p(x
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Given a likelihood function, MaxEnt becomes
Bayesian inference

p«(X) p(x)

.

. New information
p(x) « p(y|x)p«(x)

%OAK RIDGE https://doi.org/10.1063/1.2821302
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Kangaroos
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Kangaroos

%
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Table 1: Results for currently advertised functionals

Function p (blue-eyes and left-handed) Correlation
-Y plogp 1/9=0.11111 uncorrelated
-y p? 1/12 =0.08333 negative

Y log p 0.13013 positive

Y b 0.12176 positive
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Two ways to build flows: discrete vs. continuous

Discrete Continuous
x=F(z,0) 0,2 =v(z,1;0)
g=9T°LGIT_1°...°LG;2°91 XEZ(t=T)

/A VAN

p(z(t1))

“ w /*
1y ‘ ///x/f

p(z(to))
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Autoregressive flow architecture
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https://arxiv.org/abs/1912.02762

50



Rational-quadratic spline transformer

%

—— RQ Spline

B- Inverse
° Knots
] s
_ 0 _
S S
1 4
N \ | U
: : : 0 . : :
—B 0 B —B 0 B
T T

Figure 1: Monotonic rational-quadratic transforms are drop-in replacements for additive or affine
transformations in coupling or autoregressive layers, greatly enhancing their flexibility while retaining
exact invertibility. Left: A random monotonic rational-quadratic transform with KX = 10 bins and
linear tails is parameterized by a series of K + 1 ‘knot’ points in the plane, and the K — 1 derivatives
at the internal knots. Right: Derivative of the transform on the left with respect to . Monotonic
rational-quadratic splines naturally induce multi-modality when used to transform random variables.

OAK RIDGE
National Laboratory https://arxiv.org/abs/1912.02762
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Find approximate constrained maximum using
Penalty Method (PM) in outer loop

@ =pQ/ 15|
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>
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First 4D MENT demonstration in 1981!

IEEE Transactions on Nuclear Science, Vol. NS-28, No. 3, June 1981
FOUR-DIMENSIONAL BEAM TOMOGRAPHY™

G. N. Minerbo, 0. R. Sander, and R. A. Jameson
Los Alamos National Laboratory, Los Alamos, NM 87545

Summary

A computer code has been developed to recon-
struct the 4-D transverse phase-space distribution of
an accelerator beam from a set of linear profiles
measured at different angles at three or more stations
along the beam line. The code was applied to wire-
scan data obtained on the low-intensity H™ beam of
the LAMPF accelerator. A 4-D reconstruction was
obtained from 10 wire-scan profiles; 2-D projections
of the reconstruction agree fairly well with slit-and-
collector measurements of the horizontal and vertical
emittance distributions.
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We assume, for simplicity that f has been nor-
malized and centered as follows:

[ dbv f(v) =1, Jddv vy f(v) =0, n=1, ..., 4.

The transfer matrices have det Tj = 1 under very
general conditions, hence the gj will also be nor-
malized and centered. We define bj, the RMS width

of gj, by

2 2 .
, = . ] = [ .-O’J
b’ | du u gJ(U) ji=1

The covariance matrix o of f is defined as

(3)
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MENT recently applied to 4D reconstructions in

SNS accelerator at ORNL

%

PHYSICAL REVIEW ACCELERATORS AND BEAMS 25, 042801 (2022)

4D transverse phase space tomography of an operational hydrogen ion beam
via noninvasive 2D measurements using laser wires

Jonathan C. Wong ,* Andrei Shishlo®, Alexander Aleksandrov®, Yun Liu®, and Cary Long
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

® (Received 21 November 2021; accepted 23 March 2022; published 13 April 2022)

PHYSICAL REVIEW ACCELERATORS AND BEAMS 27, 122802 (2024)

Four-dimensional phase space tomography from one-dimensional
measurements of a hadron beam

Austin Hoover®"
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA

® (Received 4 September 2024; accepted 4 December 2024; published 26 December 2024)
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MENT requires map between PDF and projections

p() = pux) | | 70 &)
k
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Test: 12D Gaussian Mixture distribution
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6D phase space distribution can strongly
iInfluence beam evolution!

Dynamics
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