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Multi-turn charge-exchange injection is the primary method of creating high-intensity hadron
beams in circular accelerators. Phase space painting during injection enables tailoring of the accu-
mulated phase-space distribution. For the first time, we implement a technique called eigenpainting
to uniformly inject beam into a single non-planar mode of a coupled ring. Under ideal conditions
uniform eigenpainting generates an equilibrium distribution with uniform density in the transverse
real-space projection, an elliptical envelope and linear space charge, which can be injected self-
consistently. We demonstrate injection into a one non-planar mode in the Spallation Neutron Source
Accumulator Ring. We demonstrate sufficient control over injection of the centroid of a single bunch
into one mode with emittance ratio ≈80. For multi-turn injection of 8.8 µC of 800 MeV beam we
obtain an emittance ratio of ≈2.4.

Introduction—In high-intensity hadron rings that ac-
cumulate beam through multi-turn injection, phase space
painting, or painting, provides control of beam distribu-
tions through control of the relative position and angle of
circulating and injected beam [1]. To date, experimental
exploration of novel injection schemes has been limited
by the lack of flexibility in injection systems and optics
in rings equipped for multi-turn injection. Eigenpainting
can be used to uniformly fill one non-planar mode of a
coupled ring lattice [2]. Uniform eigenpainting generates
a special case of the well-known Kapchinskij-Vladimirskij
(KV) [3] distribution that is stationary throughout injec-
tion. We call this special case the Danilov distribution.
Interest in the Danilov distribution is based on its re-
lationship to both the KV distribution, and to circular
modes. The uniform charge distribution, and vanishing
4D emittance have important implications for the control
of space charge effects, and applications in colliders [4].
Control of space charge effects is one of the main chal-
lenges for high-intensity hadron accelerators, for which
there exists a number of novel proposals [5], [6]. In this
Letter, we report on the first experimental demonstration
of the eigenpainting method.

The KV distribution is the only known, equilib-
rium solution of the Vlasov-Poisson equations in time-
dependent, linear focusing systems. The KV distribu-
tion has long been a staple of accelerator design studies
and theoretical exploration and remains an area of active
research [7], [8]. The KV distribution is essentially a mi-
crocanonical ensemble in transverse invariants of motion
originally proposed to explore the limits of space charge
in high-intensity rings as it linearizes space charge force.
The phase space density ρ in the KV distribution is given
by,

ρ(J1, J2) ∝ δ(1− (J1/J̃1 + J2/J̃2)), (1)
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where J1,2 and J̃1,2 are the transverse actions and their
maximal values, respectively, and δ is the Dirac delta
function. The KV distribution features a hard-edged, el-
liptical envelope with uniform charge density in any 2-D
projection, leading to linear space charge forces. This
minimizes tune spread, a limiting factor for beam inten-
sity in rings, by providing a uniform tune shift across
the beam. Crosbie [9] proposed a painting scheme that
would result in a KV, but the distribution is not station-
ary during injection. The experimental realization of a
KV distribution painted self-consistently in the presence
of significant space charge would allow experimental val-
idation of models of stability [10], halo-formation, and
design principles developed over decades.
In the limit J̃2 → 0 particles occupy a single mode

and the distribution of particles in 4D phase space, ρ,
becomes

ρ(J1, J2) ∝ Θ(J1)δ(J2), (2)

where Θ is the Heaviside step function and we take mode
1 to be the mode with non-zero amplitude for simplicity.
Because the amplitude of J2 vanishes, the invariant 4D
volume, or emittance, ε = ε1ε2 ∝ ⟨J1⟩⟨J2⟩, tends to
zero. This special case is identical to the Danilov distri-
bution [11], which can be expressed as a single uniformly
filled mode.
In an uncoupled system, modes are described as flat

(planar), since motion in each planar mode appears as
a line along the corresponding axis in the x-y plane.
Coupling can transform planar modes into non-planar,
or elliptical, modes. In general, each mode is a 2D el-
lipse in 4D space which projects onto the x-y plane as
an ellipse [12]. Each non-planar mode is characterized
by non-zero angular momentum of opposite sign due to
correlated motion in x− y′ and y − x′.

Unlike planar beams, beams with non-zero angular mo-
mentum have radially separated elliptical trajectories in
real space. Further, the space charge force in a uniformly
populated mode is linear, and proportional to the beam
density. Danilov recognized that once the beam core is
established, rotational trajectories imply that additional
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FIG. 1. Projection of 4D phase space trajectory onto 2- and
3D shown as gray dots. The blue ellipse represents mode 1,
red mode 2. The painting trajectory should follow the blue
arrow.

beam can be added at larger radii maintaining a station-
ary distribution ideal for phase space painting. Achiev-
ing non-planar modes in a standard, strong-focusing lat-
tice requires special optics not typically available in ma-
chines equipped for phase space painting. We achieve
non-planar modes in the SNS using a scheme based on
Danilov’s proposal and subsequent simulations [13]. The
betatron tunes are first set equal in an uncoupled lat-
tice resulting in a coupling resonance with degenerate
eigenmodes. A solenoid breaks the degeneracy of motion
establishing two unique non-planar modes.

In addition to accommodating painting, non-planar
modes have other attractive features for high-intensity
machines. Notably, space charge tune shift depends on
the transverse beam size, and for beams prepared in cir-
cular modes, the beam size is determined by the larger
emittance. The other mode’s emittance can be arbi-
trarily small, allowing for a brighter beam for a given
tune shift regardless of charge uniformity [14]. The im-
plications of a beam which is both non-planar and KV
have been discussed by several authors, including space
charge tune shift reduction [4], extreme cooling of one
mode [15], instability suppression [16], and intrabeam
scattering [17].

Electron beams in non-planar modes, also known as
magnetized beams [18], are an active area of research that
have been studied extensively and successfully applied in
hadron cooling applications [19]. Flat beams, magnetized
beams transformed to occupy one planar mode, have also
been produced at the the Relativistic Heavy-Ion Collider

through cooling [20]. To our knowledge the experiment
reported on in this manuscript is the first to create beam
in an elliptical mode through phase space painting, which
allows the additional freedom to distribute the beam uni-
formly in the x− y plane.
As a single uniformly-filled, non-planar mode, the qual-

ity of the painted distribution is characterized by the fol-
lowing observable features: (i) uniform charge density
(ii) elliptical envelope (iii) low intrinsic 4D emittance.
We measure these properties to demonstrate successful
eigenpainting into the Spallation Neutron Source (SNS)
ring. We will proceed from a description of phase space
painting to the particular procedure used at the SNS and
a discussion of the experiment.
Phase Space Painting—During painting, beam in-

jected at time t has centroid coordinates x(t) relative
to the closed orbit of the ring in the 4D phase space.
The trajectory determines the distribution that will be
painted. This trajectory can be expressed in action-angle
coordinates (J,Ψ) of the normal modes of the single-turn
transfer matrix:

x(t) = ℜ
{√

J1(t)v1e
−iΨ1(t) +

√
J2(t)v2e

−iΨ2(t)
}
, (3)

where v1,2 are the eigenvectors of the 4 × 4 transfer
matrix M, normalized according to the Bogacz-Lebedev
convention [12].
The two most common schemes are correlated and

anti-correlated painting [21], [9], [22], which have histor-
ically been considered in the uncoupled case. We extend
their standard definitions by generalizing the uncoupled
modes, Jx,y, to J1,2. In correlated painting, both J1
and J2 increase from a minimum value, J0k, to J̃k, with
k = 1, 2, while in anti-correlated painting J1 increases
while J2 decreases[23]. In the absence of space charge
anti-correlated painting leads to the KV distribution [9].
In the presence of space charge, both schemes produce
non-stationary distributions during injection, the effects
of which can impact beam quality [24]. Figure 2 shows
beam in the x-y during accumulation, and the trajectory
in terms of J ’s to realize these schemes.
We define eigenpainting as the limit of either correlated

or anti-correlated painting as either of the two amplitudes
J̃k → 0. We let J2 vanish without loss of generality.
When J1(t) = J̃1t/T , the mode is uniformly filled and
the beam injected approaches the Danilov distribution.
Each mode is described by a complex eigenvector that

sweeps out a 2D elliptical path in 4D phase space [12].
To paint into a single mode, the painting trajectory in 4D
phase space, x(t), must lie in the plane of the eigenvector.
We hold the phase constant throughout, painting along
a line in 4D space which begins at the closed orbit at
time t = 0. The action increases linearly to a maximum
action, Jmax, at time t = T to uniformly fill the mode.
This is depicted in three dimensions in Fig. 1 by the blue
arrow. Action is proportional to amplitude squared, so
the trajectory of the closed orbit can be written,

xco(t) =
√

t/T ℜ{v1e
−iΨ1}, (4)
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FIG. 2. Representation of the painting trajectories in the plane of mode actions, J1,2 corresponding to correlated (CP),
anti-correlated (AP) and eigenpainting (EP) schemes and time evolution of the x-y distribution of beam produced by the
corresponding schemes. Red points indicate the centroid position of injected beamlets, arrows indicate centroid angle if non-
zero.

where 0 ≤ t ≤ T . By varying the injection time T at
a constant injection rate from the linac, the same beam
size can be painted with higher density. For dense enough
beams space charge modifies the matched solution. Ac-
counting for the linear space charge, the matched solution
can be expressed as a modified eigenvector in the same
linear formulation [25][26].

Experimental Demonstration—We performed an ex-
periment to demonstrate eigenpainting in the Spallation
Neutron Source (SNS) at Oak Ridge National Labora-
tory. The SNS consists of a 1.3 GeV superconducting
H− linac, a 248 m long Accumulator Ring, and a trans-
port line to the liquid mercury target. The ring injection
system is one of the most flexible in the world, provid-
ing time-varying control of the position and angle of the
closed orbit at the injection location throughout the 1 ms
injection cycle. To increase the reach of the injection
system, these experiments were conducted at a kinetic
energy of 800 MeV. For the final painting, we injected
8.8 µC beam over 600 turns (588 µs). The Ring-Target
Beam Transport (RTBT) line is equipped with wirescan-
ners and sufficiently flexible optics to reconstruct the 4D
distribution of the bunch extracted from the ring.

Defining the painting trajectory requires finding the
amplitude settings for the eight injection kickers, K, that
correspond to the initial and final points on the trajectory
Eq. 4: x(0) → K0 and x(T ) → KT . We use standard
techniques for analysing turn-by-turn BPM data and a
calibrated linear model of the ring to find the injection
coordinates corresponding to kicker amplitudes, K.

The tunes of the uncoupled ring are initially set to
νx = νy = 0.177. Powering on the solenoids we measure
ν1 = 0.196, ν2 = 0.158, a tune split of ∆ν = 0.037. Fig-
ure 3a shows vertical and horizontal turn-by-turn data

for one ≈ 10 nC pulse of beam at one BPM used for
tune calibration. Coupling is evident in the modulation
of the envelope due to beating between ν1 and ν2 present
in both planes. We choose one mode for injection, and
a phase that minimizes the horizontal angle to minimize
losses caused by the geometry of apertures near the in-
jection region [13].
To find the amplitude of each mode, we extend

Pelaia’s [27] analysis of the damped beam centroid to
the modes of a coupled ring. Assuming Gaussian energy
spread in the presence of chromaticity, the 4D coordi-
nates of the bunch centroid, x, evolve according to

xj(n) =
∑
k=1,2

Ake
−(γ1n

2+i2π(nνk+Ψk))vj
k(n) + cj , (5)

where n is the turn number, k is mode number, j is the
BPM index, and c is the closed orbit offset in the BPM.
Ψk and Ak are the injection phase and amplitude of the
bunch in each mode. νk and γk are the tunes and damp-
ing coefficients, respectively, for each mode. νk and γk
are global parameters fit geometrically using data con-
taining both modes to calibrate the ring optics. The
complex eigenvectors, vj , are then extracted from a lin-
ear model calibrated to the observed tunes. The injection
specific parameters, Ak, Ψk, c are fit globally for each set
of kicker amplitudes after obtaining the calibrated model.
Figure 3b shows the turn-by-turn BPM data for the

optimized single-mode injection, representing the end
point of painting in the phase space, KT . The am-
plitude of mode two has been reduced in both planes,
which can be seen in the reduced modulation of the
envelope despite coupling in the lattice. The square
of the amplitude of each mode is proportional to the
emittance. Thus, the ratio of the amplitudes for sin-
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(b) Optimized Injection

FIG. 3. Turn-by-turn BPM data (black points) for tune calibration and optimized injection from location A10 in the ring
injection straight showing the fit trajectory in gray and contributions from mode 1 (blue), mode 2 (red). Offsets have been
removed.

gle particle injection sets an upper limit on the emit-
tance ratio (or the minimal 4D volume) that can be
achieved after painting. The maximum achievable emit-
tance ratio based on a fit to the centroid of the injected
beam is (A1/A2)

2 ≈ 80. Ideally A2 → 0, but the ra-
tio obtained here is large enough to suggest that control
of the injection parameters does not significantly con-
tribute to reduction in the final painted emittance ratio,
which simulations predict to be ≈ 16 [13]. The differ-
ence between the single-particle amplitude ratio and the
painted emittance ratio will be addressed later. The op-
timized injection in Fig. 3 corresponds to the coordinates
x(t = T ) = (10.3 mm, 0.03 mrad, 2.0 mm, 0.91 mrad).

To inject onto the closed orbit at t = 0, we used a
similar procedure to find K0, with the goal of minimiz-
ing both modes within the noise of the BPM’s. With
the kicker settings defined at the two end points, kicker
waveforms were calculated according to Eq. 4 and used
to inject 8.8 µC of beam over 600 turns.

We used the MENT algorithm [28] to reconstruct the
accumulated 4D phase space distribution from 1D pro-
file measurements of the extracted beam [29]. The recon-
structed distribution, normalized to diagonalize the mea-
sured covariance matrix, is plotted in Fig. 4. According
to the definition of the normalized coordinates, matched
distributions should be axially-symmetric and their areas
should correspond to the invariant emittances.

The RMS invariant emittances of the (u1, u
′
1) and

(u2, u
′
2) distributions in Fig. 4 are 12.4 and 5.1 µm, re-

spectively, giving a ratio of 2.4. This is about 7 times
lower than the value of 16 demonstrated in best-case sim-
ulations. The discrepancy is due to the fact that these
simulations assumed a larger final beam size than we were
able to achieve.

An idealized Danilov distribution would be a
uniformly-filled circle in the (u1, u

′
1) phase space and a

point in the (u2, u
′
2) phase space. The difference in the

size of distributions in the two modes in Fig. 4 indicates
that beam was painted preferentially into one mode.

We model the painted distribution in (u1, u
′
1) as a con-

volution of a 2D Gaussian of width σ1 with a Heaviside
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FIG. 4. 2D projections of the reconstructed 4D phase space
distribution in normalized coordinates. Solid black lines indi-
cate the contours and projection of the fit distribution. The
dashed line in the projection shows a Gaussian distribution
with equal RMS width to the fit for comparison.

step function in radius R:

ρ(u⃗1|R, σ1) =

∫
u⃗inj
1

d2u⃗inj
1

Θ(1− |u⃗inj
1 |/R)

πR2
×

1

2πσ2
1

exp

(
−|u⃗1 − u⃗inj

1 |2

2σ2
1

)
(6)

Fitting to Eq. 6 gives, σ1 = 1.79 ± 0.01
√
µm and

R = 6.03± 0.01
√
µm.

Assuming no painting in mode 2, we fit the (u2, u
′
2)

distribution with a simple 2D Gaussian giving a standard
deviation, σ2 = 2.292± 0.001

√
µm.

Figure 4 shows contours for the fit functions in black,
along with 1D projections onto the u, u′ axes for each
mode. In the left plot, the dotted line over the 1D pro-
jections indicates the projection of a 2D Gaussian with
the same rms width as the data to contrast with the con-
volution.
In the presence of space charge, the eigenvectors of the

matched beam are modified from the bare lattice values.
Simulations showed that for the beam painted in these
experiments the effect of space charge on the eigenvectors
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is small so we did not correct for them. The finite emit-
tance of the linac beam, exacerbated by mismatch be-
tween the linac and ring optics, introduces non-linearities
in the space charge that distort the beam during paint-
ing.

Ideally, the Gaussian widths squared σ2
1 = 3.20 µm

and σ2
2 = 5.25 µm would match the injected emittances.

However, they are larger than the direct contribution of
the injected emittance of εinj ≈ 0.3 µm. Using the pre-
viously measured linac optics parameters at the injection
point and the periodic ring optics at the same point, we
estimate that mismatch is responsible for an increase of a
factor of ≈ 2 in the emittance in each plane (or ≈

√
2 in

the Gaussian widths). Thus, mismatch explains a small
portion of the difference. The rest of the difference can
be attributed to collective and non-linear effects due to
the non-negligible injected beam size relative to the final
painted volume.

Conclusion—We have implemented uniform eigen-
painting, a method to self-consistently paint a special
case of the KV distribution in a coupled ring by predom-
inantly filling one of its non-planar modes. We gener-
ated a beam with 4D emittance lower than an uncoupled
beam with similar footprint in the x-y plane, achieving
an emittance ratio of 2.4. We note that this is below the
best value achieved in simulation of ≈ 16, but crosses the
threshold for a reduction of the space charge tune shift
relative to a planar beam [14].

We identified the following sources of error contribut-
ing to deviations from best-case simulations. The rel-
ative size of the injected beam to the final painted vol-
ume dominates. Mismatch between linac and ring optics,
and modifications to the eigenvectors due to the effect of
space charge on the matched solution also contribute.
Imperfect control of the injection parameters to inject
into the chosen mode is negligible.

Issues of beam size and matching do not represent a
fundamental limit on the beam quality, only a limitation
of the SNS configuration. From simulation we expect
the effect of space charge on the orientation of the eigen-
vectors to be contribute only a small error in these ex-

periments. However, the degree to which this effect can
be accounted for during painting is an open question,
and would likely set the fundamental limit on the qual-
ity of higher-intensity beams in purpose-built injection
systems.
In the current SNS geometry excessive beam loss due

to scattering in the foil would be a barrier to eigenpaint-
ing during normal operation because of the geometry of
the injection region. This is not a fundamental limitation
relative to standard injection schemes and could be ad-
dressed with a more suitable design, or eliminated com-
pletely with laser-based charge exchange [30].
The quality of uniformly eigenpainted beams after

transport and acceleration, particularly as the assump-
tion of a coasting beam becomes unreasonable, is un-
certain. However, eigenpainting would still be useful if
circular modes could be maintained with a non-uniform
charge density. For instance, circular modes alone pro-
vide benefits related to space charge reduction, and flat
beams for luminosity increase [4].
Finally, we note that eigenpainting beams with intense

space charge near equilibrium offers a unique opportunity
to study open questions related to high-intensity hadron
beams. Particularly interesting are questions of halo for-
mation, beam stability, and space charge reduction.
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(Birkhäuser Basel, Basel, 1980) pp. 277–282.

[2] V. Danilov, S. Cousineau, S. Henderson, and J. Holmes,
Phys. Rev. ST Accel. Beams 6, 094202 (2003).

[3] I. M. Kapchinskij and V. V. Vladimirskij, in 2nd Inter-
national Conference on High-Energy Accelerators (1959)
pp. 274–287.

[4] A. Burov, Phys. Rev. ST Accel. Beams 16, 061002
(2013).

[5] A. Oeftiger and O. Boine-Frankenheim, Phys. Rev. Lett.
132, 175001 (2024).

[6] V. Danilov and S. Nagaitsev, Phys. Rev. ST Accel. Beams

13, 084002 (2010).
[7] M. Chung, H. Qin, R. C. Davidson, L. Groening, and

C. Xiao, Phys. Rev. Lett. 117, 224801 (2016).
[8] S. M. Lund, T. Kikuchi, and R. C. Davidson, Phys. Rev.

ST Accel. Beams 12, 114801 (2009).
[9] E. Crosbie and K. Symon, Conf. Proc. C 950501, 3167

(1996).
[10] I. Hoffman, L. Laslett, L. Smith, and I. Haber, Particle

Accelerators 13, 145 (1983).
[11] V. Danilov, S. Cousineau, S. Henderson, J. Holmes, and

M. Plum, in Proc. EPAC (2004).
[12] V. A. Lebedev and S. A. Bogacz, Journal of Instrumen-

tation 5, P10010 (2010).
[13] J. A. Holmes, T. Gorlov, N. J. Evans, M. Plum, and

S. Cousineau, Phys. Rev. Accel. Beams 21, 124403



6

(2018).
[14] A. Burov, Y. Derbenev, and F. J. N. News, Submitted

to Phys.Rev.Lett. (2009).
[15] A. Burov, S. Nagaitsev, and Y. Derbenev, Phys. Rev. E

66, 016503 (2002).
[16] Y.-L. Cheon, S.-H. Moon, M. Chung, and D.-O. Jeon,

Phys. Rev. Accel. Beams 25, 064002 (2022).
[17] B. M. O. Gilanliogullari and P. Snopok, in EnglishProc.

IPAC’23 , IPAC’23 - 14th International Particle Accel-
erator Conference No. 14 (JACoW Publishing, Geneva,
Switzerland, 2023) pp. 2391–2394.

[18] Y. S. Derbenev and A. Skrinskii, Magnetization effects in
electron cooling, Tech. Rep. (AN SSSR, 1977).

[19] S. Nagaitsev, D. Broemmelsiek, A. Burov, K. Carl-
son, C. Gattuso, M. Hu, T. Kroc, L. Prost,
S. Pruss, M. Sutherland, C. W. Schmidt, A. Shemyakin,
V. Tupikov, A. Warner, G. Kazakevich, and S. Seletskiy,
Phys. Rev. Lett. 96, 044801 (2006).

[20] Y. Luo, D. Xu, M. Blaskiewicz, and C. Montag, Phys.
Rev. Lett. 132, 205001 (2024).

[21] Y. Kamiya, in Proceedings of the 1989 IEEE Particle Ac-
celerator Conference, . ’Accelerator Science and Technol-
ogy (1989) pp. 660–662 vol.1.

[22] J. Beebe-Wang, Y. Y. Lee, D. Raparia, and J. Wei,

in englishProc. PAC’99 (JACoW Publishing, Geneva,
Switzerland) pp. 1743–1745.

[23] More exotic schemes have also been proposed with, e.g.,
anti-correlated painting sinusoidal variation in the action
attempting to slowly build up space charge over the entire
footprint, but this has never been demonstrated as it
would lead to unacceptable beam loss [31]. This scheme
could be revisited in light-based charge exchange.

[24] H. Hotchi, Phys. Rev. Accel. Beams 23, 050401 (2020).
[25] A. Hoover, N. J. Evans, and J. A. Holmes, Phys. Rev.

Accel. Beams 24, 044201 (2021).
[26] Here we assume continuous injection of a point-like beam.

In practice a finite beam size, and discrete injection will
require some accounting for transient effects.

[27] T. Pelaia, II, arXiv.org Repository 2016 (2016).
[28] G. Minerbo, Computer Graphics and Image Processing

10, 48 (1979).
[29] A. Hoover, Phys. Rev. Accel. Beams 27, 122802 (2024).
[30] A. Aleksandrov, S. Cousineau, T. Gorlov, Y. Liu,

A. Oguz, A. Shishlo, A. Zhukov, and M. Kay, Phys.
Rev. Accel. Beams 26, 043501 (2023).

[31] J. Beebe-Wang, Oscillating Injection Painting And Re-
lated Technical Issues, Tech. Rep. (BNL/SNS, 2000).


